13 research outputs found

    DĂ©formation de la peau d'un personnage avec prise en compte des contacts

    Get PDF
    National audienceLors de l'animation d'un maillage représentant la peau d'un personnage ou d'un animal par exemple, des techniques dites de skinning sont utilisées pour le déformer au niveau des articulations. Bien que trÚs populaires dans l'industrie pour leur trÚs faible coût d'évaluation, les techniques de skinning géométrique comme le LBS (Linear Blending Skinning) ou les dual quaternions, ne permettent pas d'imiter de façon crédible les déformations des membres. Pour mieux capturer le comportement de la peau, d'autres méthodes basées seulement sur le maillage, utilisent des calculs coûteux comme la détection de collisions ou la correction de volume. Toutefois ces approches restent seulement adaptées au rendu hors ligne. Nous présentons la premiÚre méthode temps réel produisant une déformation du maillage en prenant en compte le contact de la peau et, éventuellement, le gonflement des muscles. Nous proposons d'utiliser de façon conjointe le maillage et une représentation volumique. Le maillage est approximé avec une surface implicite qui nous permet de le déformer de façon plausible tout en traitant les collisions et en conservant les détails du maillage

    Implicit Skinning: Real-Time Skin Deformation with Contact Modeling

    Get PDF
    SIGGRAPH 2013 Conference ProceedingsInternational audienceGeometric skinning techniques, such as smooth blending or dualquaternions, are very popular in the industry for their high performances, but fail to mimic realistic deformations. Other methods make use of physical simulation or control volume to better capture the skin behavior, yet they cannot deliver real-time feedback. In this paper, we present the first purely geometric method handling skin contact effects and muscular bulges in real-time. The insight is to exploit the advanced composition mechanism of volumetric, implicit representations for correcting the results of geometric skinning techniques. The mesh is first approximated by a set of implicit surfaces. At each animation step, these surfaces are combined in real-time and used to adjust the position of mesh vertices, starting from their smooth skinning position. This deformation step is done without any loss of detail and seamlessly handles contacts between skin parts. As it acts as a post-process, our method fits well into the standard animation pipeline. Moreover, it requires no intensive computation step such as collision detection, and therefore provides real-time performances

    Robust iso-surface tracking for interactive character skinning

    Get PDF
    International audienceWe present a novel approach to interactive character skinning, which is robust to extreme character movements, handles skin contacts and produces the effect of skin elasticity (sliding). Our approach builds on the idea of implicit skinning in which the character is approximated by a 3D scalar field and mesh-vertices are appropriately re-projected. Instead of being bound by an initial skinning solution used to initialize the shape at each time step, we use the skin mesh to directly track iso-surfaces of the field over time. Technical problems are two-fold: firstly, all contact surfaces generated between skin parts should be captured as iso-surfaces of the implicit field; secondly, the tracking method should capture elastic skin effects when the joints bend, and as the character returns to its rest shape, so the skin must follow. Our solutions include: new composition operators enabling blending effects and local self-contact between implicit surfaces, as well as a tangential relaxation scheme derived from the as-rigid-as possible energy to solve the tracking problem

    Unravelling the sex-specific diversity and functions of adrenal gland macrophages

    Get PDF
    Despite the ubiquitous function of macrophages across the body, the diversity, origin, and function of adrenal gland macrophages remain largely unknown. We define the heterogeneity of adrenal gland immune cells using single-cell RNA sequencing and use genetic models to explore the developmental mechanisms yielding macrophage diversity. We define populations of monocyte-derived and embryonically seeded adrenal gland macrophages and identify a female-specific subset with low major histocompatibility complex (MHC) class II expression. In adulthood, monocyte recruitment dominates adrenal gland macrophage maintenance in female mice. Adrenal gland macrophage sub-tissular distribution follows a sex-dimorphic pattern, with MHC class IIlow macrophages located at the cortico-medullary junction. Macrophage sex dimorphism depends on the presence of the cortical X-zone. Adrenal gland macrophage depletion results in altered tissue homeostasis, modulated lipid metabolism, and decreased local aldosterone production during stress exposure. Overall, these data reveal the heterogeneity of adrenal gland macrophages and point toward sex-restricted distribution and functions of these cells.</p

    Automatic shape adjustment at joints for the implicit skinning

    No full text
    International audienceThe implicit skinning is a geometric interactive skinning method, for skeleton-based animations, enabling plausible deformations at joints while resolving skin self-collisions. Even though requiring a few user interactions to be adequately parameterized, some efforts have to be spent on the edition of the shapes at joints. In this research, we introduce a dedicated optimisation framework for automatically adjusting the shape of the surfaces generating the deformations at joints when they are rotated during an animation. This approach directly fits in the implicit skinning pipeline and it has no impact on the algorithm performance during animation. Starting from the mesh partition of the mesh representing the animated character, we propose a dedicated hole filling algorithm based on a particle system and a power crust meshing. We then introduce a procedure optimizing the shape of the filled mesh when it rotates at the joint level. This automatically generates plausible skin deformation when joints are rotated without the need of extra user editing

    DĂ©formation de la peau d'un personnage avec prise en compte des contacts

    No full text
    National audienceLors de l'animation d'un maillage représentant la peau d'un personnage ou d'un animal par exemple, des techniques dites de skinning sont utilisées pour le déformer au niveau des articulations. Bien que trÚs populaires dans l'industrie pour leur trÚs faible coût d'évaluation, les techniques de skinning géométrique comme le LBS (Linear Blending Skinning) ou les dual quaternions, ne permettent pas d'imiter de façon crédible les déformations des membres. Pour mieux capturer le comportement de la peau, d'autres méthodes basées seulement sur le maillage, utilisent des calculs coûteux comme la détection de collisions ou la correction de volume. Toutefois ces approches restent seulement adaptées au rendu hors ligne. Nous présentons la premiÚre méthode temps réel produisant une déformation du maillage en prenant en compte le contact de la peau et, éventuellement, le gonflement des muscles. Nous proposons d'utiliser de façon conjointe le maillage et une représentation volumique. Le maillage est approximé avec une surface implicite qui nous permet de le déformer de façon plausible tout en traitant les collisions et en conservant les détails du maillage

    Brown adipose tissue monocytes support tissue expansion

    Full text link
    Monocytes are part of the mononuclear phagocytic system. Monocytes play a central role during inflammatory conditions and a better understanding of their dynamics might open therapeutic opportunities. In the present study, we focused on the characterization and impact of monocytes on brown adipose tissue (BAT) functions during tissue remodeling. Single-cell RNA sequencing analysis of BAT immune cells uncovered a large diversity in monocyte and macrophage populations. Fate-mapping experiments demonstrated that the BAT macrophage pool requires constant replenishment from monocytes. Using a genetic model of BAT expansion, we found that brown fat monocyte numbers were selectively increased in this scenario. This observation was confirmed using a CCR2-binding radiotracer and positron emission tomography. Importantly, in line with their tissue recruitment, blood monocyte counts were decreased while bone marrow hematopoiesis was not affected. Monocyte depletion prevented brown adipose tissue expansion and altered its architecture. Podoplanin engagement is strictly required for BAT expansion. Together, these data redefine the diversity of immune cells in the BAT and emphasize the role of monocyte recruitment for tissue remodeling

    REDD1 deficiency protects against nonalcoholic hepatic steatosis induced by high‐fat diet

    No full text
    International audienceNonalcoholic fatty liver disease is a chronic liver disease which is associated with obesity and insulin resistance. We investigated the implication of REDD1 (Regulated in development and DNA damage response-1), a stress-induced protein in the development of hepatic steatosis. REDD1 expression was increased in the liver of obese mice and morbidly obese patients, and its expression correlated with hepatic steatosis and insulin resistance in obese patients. REDD1 deficiency protected mice from the development of hepatic steatosis induced by high-fat diet (HFD) without affecting body weight gain and glucose intolerance. This protection was associated with a decrease in the expression of lipogenic genes, SREBP1c, FASN, and SCD-1 in liver of HFD-fed REDD1-KO mice. Healthy mitochondria are crucial for the adequate control of lipid metabolism and failure to remove damaged mitochondria is correlated with liver steatosis. Expression of markers of autophagy and mitophagy, Beclin, LC3-II, Parkin, BNIP3L, was enhanced in liver of HFD-fed REDD1-KO mice. The number of mitochondria showing colocalization between LAMP2 and AIF was increased in liver of HFD-fed REDD1-KO mice. Moreover, mitochondria in liver of REDD1-KO mice were smaller than in WT. These results are correlated with an increase in PGC-1α and CPT-1 expression, involved in fatty acid oxidation. In conclusion, loss of REDD1 protects mice from the development of hepatic steatosis

    Brown adipose tissue monocytes support tissue expansion

    No full text
    International audienceMonocytes are part of the mononuclear phagocytic system. Monocytes play a central role during inflammatory conditions and a better understanding of their dynamics might open therapeutic opportunities. In the present study, we focused on the characterization and impact of monocytes on brown adipose tissue (BAT) functions during tissue remodeling. Single-cell RNA sequencing analysis of BAT immune cells uncovered a large diversity in monocyte and macrophage populations. Fate-mapping experiments demonstrated that the BAT macrophage pool requires constant replenishment from monocytes. Using a genetic model of BAT expansion, we found that brown fat monocyte numbers were selectively increased in this scenario. This observation was confirmed using a CCR2-binding radiotracer and positron emission tomography. Importantly, in line with their tissue recruitment, blood monocyte counts were decreased while bone marrow hematopoiesis was not affected. Monocyte depletion prevented brown adipose tissue expansion and altered its architecture. Podoplanin engagement is strictly required for BAT expansion. Together, these data redefine the diversity of immune cells in the BAT and emphasize the role of monocyte recruitment for tissue remodeling
    corecore